
Programming Models
Summary

William Gropp
www.mcs.anl.gov/~gropp

Argonne National
Laboratory Summary

Effect of code transformations for uni-
processor performance

Factor
of 7

Argonne National
Laboratory Summary

What Have We Done Well?
 Recognition of the importance of

– Locality for performance
– Portability
– Latency hiding
– Aiding the programmer with data decomposition/distribution
– Reuse of Legacy code fragments

Argonne National
Laboratory Summary

Avoiding complex memory
consistency models for the
programmers– Adopting successful advances in programming models (like OO)
 Realistic global coherence model (as in, not)
 Some recognition of the problem of “brittleness”
 Some discussion of adoption strategy
 Exploring different solutions to these problems

Argonne National
Laboratory Summary

What Are We Missing?
Role of hardware

– Tension between portability and performance
advantages

Need for multiple implementations of each language
Time to develop a language

– Are we too optimistic?
What are the application classes?

– We use multiple languages now
Who is the audience?

– Experts? Which Experts?
– The masses?

Argonne National
Laboratory Summary

What Are We Missing (2)?
 Intelligence and Creativity of the compiler

– Are we expecting too much from the compiler?
– Scalability (given problems with OpenMP, what is different)? Complexity

of collective algorithms (will your compiler publish papers?)
– Recalling the HPF experience,

• What features are straightforward?
• What features are difficult (may involve tradeoffs wrt performance)?
• What features are good ideas that require research?
• How do features interact with each other, particularly WRT

performance?
 Is the real productivity problem complex software?
 Stability

– Languages that rely on a rich set of methods are very risky (for users)
because the methods are not viewed as immutable (TK, Java)

 Planning for the future
– Will these languages be relevant when they have time to mature?
– Heterogeneity

Argonne National
Laboratory Summary

What Are We Really Missing?
 I/O!
 Ease of writing incorrect codes; detectibility of errors (e.g., avoiding

races)
– E.g., does deleting a token such as “atomic” introduce a race?

Would it be better to have a “nonatomic” token?
 Fault handling (defined behavior on errors, detection, repair, …)
 Alternate (non-text-only) description formats?

